RAMOS人B淋巴细胞瘤细胞

价 格:¥1800

期 货:现货(冻存管发2支)

保藏中心:BTCC

资源编号:BTCC-1148

产地:中国

套 餐:

T25/复苏细胞 无血清冻存液 专用完全培养基500ml 南美特级胎牛血清500ml

详细资料说明书下载质检报告(COA)

Cell line nameRamos
SynonymsRAMOS; Ramos 1; RA 1; RA.1; Ra #1; Ra No. 1; Ramos(RA1); Ramos-RA1; Ramos (RA 1); Ramos (RA)
AccessionBTCC-1148
Resource Identification InitiativeTo cite this cell line use: Ramos (BTCC-1148)
CommentsPart of: Cancer Dependency Map project (DepMap) (includes Cancer Cell Line Encyclopedia - CCLE).
Part of: LL-100 blood cancer cell line panel.
Part of: MD Anderson Cell Lines Project.
Part of: NCI Pediatric Preclinical Testing Program (PPTP) cell line panel.
Population: Caucasian.
Virology: EBV-negative.
Doubling time: 20.4 +- 1.5 hours (PubMed=9225077); 23 hours (PubMed=8402660); 14 hours (PubMed=20922763); ~48 hours (DSMZ=ACC-603).
Microsatellite instability: Stable (MSS) (PubMed=10739008; PubMed=11226526).
Omics: Deep exome analysis.
Omics: Deep proteome analysis.
Omics: Protein expression by reverse-phase protein arrays.
Omics: SNP array analysis.
Omics: Transcriptome analysis by microarray.
Omics: Transcriptome analysis by RNAseq.
Derived from site: In situ; Ascites; UBERON=UBERON_0007795.
Sequence variations
  • Gene fusion; HGNC; 5477; IGH + HGNC; 7553; MYC; Name(s)=MYC-IGH (PubMed=10918597).
  • Mutation; HGNC; 11998; TP53; Simple; p.Ile254Asp (c.760_761AT>GA); Zygosity=Homozygous (PubMed=1915267; PubMed=2052620; PubMed=8344493).
HLA typingSource: PubMed=25960936
Class I
HLA-AA*03:01,03:01
HLA-BB*44:03,51:01
HLA-CC*16:01,16:01
Class II
HLA-DQDQA1*02:01,02:01

DQB1*02:01,02:01
HLA-DRDRB1*07:01,14:103

Source: PubMed=26589293
Class I
HLA-AA*03:01,03:01
HLA-BB*44:03,51:01
HLA-CC*16:01,16:01
Class II
HLA-DQDQA1*02:01,02:01

DQB1*02:01,02:01
HLA-DRDRB1*07:01,14:05

Source: CLS=302007
Class I
HLA-AA*03:01:01
HLA-BB*44:160Q,51:01:01
HLA-CC*16:01:01
Class II
HLA-DPDPB1*04:01:01,104:01:01
HLA-DQDQA1*02:01:01

DQB1*02:02:01
HLA-DRDRB1*07:01:01

Source: DSMZCellDive=ACC-603
Class I
HLA-AA*03:01:01,03:01:01
HLA-BB*44:03:01,51:01:01
HLA-CC*16:01:01,16:01:01
Class II
HLA-DPDPA1*01:03:01,01:03:01

DPB1*04:01:01,104:01
HLA-DQDQA1*02:01:01,02:01:01
HLA-DRDRA*01:01:01,01:01:01

DRB1*07:01:01,07:01:01
DiseaseBurkitt lymphoma (NCIt: C2912)
Burkitt lymphoma (ORDO: Orphanet_543)
Species of originHomo sapiens (Human) (NCBI Taxonomy: 9606)
HierarchyChildren:



CVCL_KS64 (CellSensor ISRE-bla RA-1)CVCL_KS46 (CellSensor NFAT-bla RA-1)CVCL_KB47 (CellSensor NFkB-bla RA-1)
CVCL_KS55 (CellSensor STAT6-bla RA-1)CVCL_B6UL (II-WA-Ramos)CVCL_JL65 (Ramos B7)
CVCL_2702 (Ramos-AW)CVCL_X591 (Ramos-Blue)CVCL_X592 (Ramos-Blue KD-Myd)
CVCL_C003 (Ramos-EHRA)CVCL_2703 (Ramos-EHRB)CVCL_1646 (Ramos.2G6.4C10)
CVCL_ZU79 (Ramos/B95-8)CVCL_S546 (Ramos/DC-SIGN)CVCL_ZU80 (Ramos/NPC)
CVCL_WS53 (sfRamos)

Sex of cellMale
Age at sampling3Y
CategoryCancer cell line
STR profileSource(s): ATCC; CCRID; CLS; COG; DepMap; DSMZ; ECACC; Genomics_Center_BCF_Technion; JCRB; KCLB; PubMed=20922763; PubMed=25877200

Markers:
AmelogeninX
CSF1PO10,11
D1S165612,15.3
D2S44111,14
D2S133820,23
D3S135814,15
D5S8187,12
D6S104313,15
D7S82011
D8S117913 (CLS)
13,16 (CCRID; DepMap; DSMZ; Genomics_Center_BCF_Technion; PubMed=20922763; PubMed=25877200)
D10S124814,15
D12S39119,22
D13S31712,13,14 (CLS)
13,14 (ATCC; CCRID; COG; DepMap; DSMZ; ECACC; Genomics_Center_BCF_Technion; JCRB; KCLB; PubMed=20922763; PubMed=25877200)
D16S53910,13
D18S5114,15 (CLS; DSMZ)
15 (CCRID; DepMap; Genomics_Center_BCF_Technion; PubMed=20922763; PubMed=25877200)
D19S43314,15.2
D21S1130
D22S104515
FGA20,24
Penta D10,13
Penta E6,8,21 (CLS)
8,21 (CCRID; DepMap; DSMZ; Genomics_Center_BCF_Technion; PubMed=25877200)
TH017,9.3
TPOX8,9
vWA15,16

Run an STR similarity search on this cell line
Web pageshttp://www.cells-talk.com/index.php/page/copelibrary?key=Ramos
https://www.thermofisher.com/ch/en/home/technical-resources/cell-lines/r/cell-lines-detail-485.html
http://www.cccells.org/cellreqs-ncipptp.php
http://www.pptpinvitro.org/cell_lines_panel.php
https://tcpaportal.org/mclp/
Publications

PubMed=181343; DOI=10.1159/000149930
Klein G., Giovanella B.C., Westman A., Stehlin J.S. Jr., Mumford D.M.
An EBV-genome-negative cell line established from an American Burkitt lymphoma; receptor characteristics. EBV infectibility and permanent conversion into EBV-positive sublines by in vitro infection.
Intervirology 5:319-334(1975)

PubMed=62724; DOI=10.1002/ijc.2910180513
Klein G., Zeuthen J., Terasaki P.I., Billing R.J., Honig R., Jondal M., Westman A., Clements G.B.
Inducibility of the Epstein-Barr virus (EBV) cycle and surface marker properties of EBV-negative lymphoma lines and their in vitro EBV-converted sublines.
Int. J. Cancer 18:639-652(1976)

PubMed=175026; DOI=10.1002/ijc.2910170203
Fresen K.-O., zur Hausen H.
Establishment of EBNA-expressing cell lines by infection of Epstein-Barr virus (EBV)-genome-negative human lymphoma cells with different EBV strains.
Int. J. Cancer 17:161-166(1976)

PubMed=7316467; DOI=10.1111/j.1469-1809.1980.tb00953.x
Povey S., Jeremiah S., Arthur E., Steel M., Klein G.
Differences in genetic stability between human cell lines from patients with and without lymphoreticular malignancy.
Ann. Hum. Genet. 44:119-133(1980)

PubMed=6286763; DOI=10.4049/jimmunol.129.3.1336
Benjamin D., Magrath I.T., Maguire R.T., Janus C., Todd H.D., Parsons R.G.
Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt's and non-Burkitt's type.
J. Immunol. 129:1336-1342(1982)

PubMed=6231253; DOI=10.1002/ijc.2910330407
Ehlin-Henriksson B., Klein G.
Distinction between Burkitt lymphoma subgroups by monoclonal antibodies: relationships between antigen expression and type of chromosomal translocation.
Int. J. Cancer 33:459-463(1984)

PubMed=2985879; DOI=10.1016/0145-2126(85)90084-0
Drexler H.G., Gaedicke G., Minowada J.
Isoenzyme studies in human leukemia-lymphoma cell lines -- 1 carboxylic esterase.
Leuk. Res. 9:209-229(1985)

PubMed=2998993
Steel C.M., Morten J.E.N., Foster E.
The cytogenetics of human B lymphoid malignancy: studies in Burkitt's lymphoma and Epstein-Barr virus-transformed lymphoblastoid cell lines.
IARC Sci. Publ. 60:265-292(1985)

PubMed=3159941; DOI=10.1016/0145-2126(85)90134-1
Drexler H.G., Gaedicke G., Minowada J.
Isoenzyme studies in human leukemia-lymphoma cell lines -- III Beta-hexosaminidase (E.C. 3.2.1.30).
Leuk. Res. 9:549-559(1985)

PubMed=3874327; DOI=10.1016/0145-2126(85)90133-x
Drexler H.G., Gaedicke G., Minowada J.
Isoenzyme studies in human leukemia-lymphoma cells lines -- II. Acid phosphatase.
Leuk. Res. 9:537-548(1985)

PubMed=3518877; DOI=10.3109/07357908609038260
Fogh J.
Human tumor lines for cancer research.
Cancer Invest. 4:157-184(1986)

PubMed=2835030; DOI=10.1016/s0385-8146(87)80025-1
Takimoto T., Sato H., Ogura H., Miyazaki T.
Establishment of an Epstein-Barr virus (EBV) genome-positive subline of Ramos (Ramos/NPC) following infection of Ramos with nasopharyngeal carcinoma (NPC)-derived EBV.
Auris Nasus Larynx 14:87-92(1987)

PubMed=3026973; DOI=10.1002/ijc.2910390215
Ehlin-Henriksson B., Manneborg-Sandlund A., Klein G.
Expression of B-cell-specific markers in different Burkitt lymphoma subgroups.
Int. J. Cancer 39:211-218(1987)

PubMed=1850347; DOI=10.1210/endo-128-5-2266
Baglia L.A., Cruz D., Shaw J.E.
An Epstein-Barr virus-negative Burkitt lymphoma cell line (sfRamos) secretes a prolactin-like protein during continuous growth in serum-free medium.
Endocrinology 128:2266-2272(1991)

PubMed=1915267; DOI=10.1002/j.1460-2075.1991.tb07837.x
Farrell P.J., Allan G.J., Shanahan F., Vousden K.H., Crook T.
p53 is frequently mutated in Burkitt's lymphoma cell lines.
EMBO J. 10:2879-2887(1991)

PubMed=2052620; DOI=10.1073/pnas.88.12.5413
Gaidano G., Ballerini P., Gong J.Z., Inghirami G., Neri A., Newcomb E.W., Magrath I.T., Knowles D.M., Dalla-Favera R.
p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia.
Proc. Natl. Acad. Sci. U.S.A. 88:5413-5417(1991)

PubMed=8316623; DOI=10.2307/3578190
Evans H.H., Ricanati M., Horng M.-F., Jiang Q.-Y., Mencl J., Olive P.L.
DNA double-strand break rejoining deficiency in TK6 and other human B-lymphoblast cell lines.
Radiat. Res. 134:307-315(1993)

PubMed=8344493; DOI=10.1096/fasebj.7.10.8344493
Bhatia K.G., Goldschmidts W., Gutierrez M.I., Gaidano G., Dalla-Favera R., Magrath I.T.
Hemi- or homozygosity: a requirement for some but not other p53 mutant proteins to accumulate and exert a pathogenetic effect.
FASEB J. 7:951-956(1993)

PubMed=8402660
O'Connor P.M., Jackman J., Jondle D., Bhatia K.G., Magrath I.T., Kohn K.W.
Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines.
Cancer Res. 53:4776-4780(1993)

PubMed=8515068; DOI=10.4049/jimmunol.150.12.5418
Jain V.K., Judde J.-G., Max E.E., Magrath I.T.
Variable IgH chain enhancer activity in Burkitt's lymphomas suggests an additional, direct mechanism of c-myc deregulation.
J. Immunol. 150:5418-5428(1993)

PubMed=7757991
Bae I., Fan S., Bhatia K.G., Kohn K.W., Fornace A.J. Jr., O'Connor P.M.
Relationships between G1 arrest and stability of the p53 and p21Cip1/Waf1 proteins following gamma-irradiation of human lymphoma cells.
Cancer Res. 55:2387-2393(1995)

PubMed=8896424; DOI=10.1182/blood.V88.9.3562.bloodjournal8893562
Chapman C.J., Zhou J.X., Gregory C.D., Rickinson A.B., Stevenson F.K.
VH and VL gene analysis in sporadic Burkitt's lymphoma shows somatic hypermutation, intraclonal heterogeneity, and a role for antigen selection.
Blood 88:3562-3568(1996)

PubMed=9192833
Cherney B.W., Bhatia K.G., Sgadari C., Gutierrez M.I., Mostowski H.S., Pike S.E., Gupta G., Magrath I.T., Tosato G.
Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt's lymphoma cells.
Cancer Res. 57:2508-2515(1997)

PubMed=9225077; DOI=10.1016/S0145-2126(97)00126-4
Okano M.
High susceptibility of an Epstein-Barr virus-converted Burkitt's lymphoma cell line to cytotoxic drugs.
Leuk. Res. 21:469-471(1997)

PubMed=9473234; DOI=10.1182/blood.V91.5.1680
Klangby U., Okan I., Magnusson K.P., Wendland M., Lind P., Wiman K.G.
p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma.
Blood 91:1680-1687(1998)

PubMed=9973220
Gutierrez M.I., Cherney B.W., Hussain A., Mostowski H.S., Tosato G., Magrath I.T., Bhatia K.G.
Bax is frequently compromised in Burkitt's lymphomas with irreversible resistance to Fas-induced apoptosis.
Cancer Res. 59:696-703(1999)

PubMed=10739008; DOI=10.1016/S0145-2126(99)00182-4
Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines.
Leuk. Res. 24:255-262(2000)

PubMed=10918597; DOI=10.1038/sj.onc.1203686
Bemark M., Neuberger M.S.
The c-MYC allele that is translocated into the IgH locus undergoes constitutive hypermutation in a Burkitt's lymphoma line.
Oncogene 19:3404-3410(2000)

PubMed=11226526; DOI=10.1016/S0145-2126(00)00121-1
Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
Corrigendum to: Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines Leukemia Research 24 (2000),255-262.
Leuk. Res. 25:275-278(2001)

PubMed=12967475; DOI=10.1111/j.1349-7006.2003.tb01518.x
Maesako Y., Uchiyama T., Ohno H.
Comparison of gene expression profiles of lymphoma cell lines from transformed follicular lymphoma, Burkitt's lymphoma and de novo diffuse large B-cell lymphoma.
Cancer Sci. 94:774-781(2003)

PubMed=18211290; DOI=10.1111/j.1365-2184.2007.00500.x
Zander Balderud L., Bemark M.
Identification of genes deregulated during serum-free medium adaptation of a Burkitt's lymphoma cell line.
Cell Prolif. 41:136-155(2008)

PubMed=20922763; DOI=10.1002/pbc.22801
Kang M.H., Smith M.A., Morton C.L., Keshelava N., Houghton P.J., Reynolds C.P.
National Cancer Institute pediatric preclinical testing program: model description for in vitro cytotoxicity testing.
Pediatr. Blood Cancer 56:239-249(2011)

PubMed=22885699; DOI=10.1038/nature11378
Schmitz R., Young R.M., Ceribelli M., Jhavar S., Xiao W.-M., Zhang M.-L., Wright G., Shaffer A.L. III, Hodson D.J., Buras E., Liu X.-L., Powell J.I., Yang Y.-D., Xu W.-H., Zhao H., Kohlhammer H., Rosenwald A., Kluin P., Muller-Hermelink H.-K., Ott G., Gascoyne R.D., Connors J.M., Rimsza L.M., Campo E., Jaffe E.S., Delabie J., Smeland E.B., Ogwang M.D., Reynolds S.J., Fisher R.I., Braziel R.M., Tubbs R.R., Cook J.R., Weisenburger D.D., Chan W.C., Pittaluga S., Wilson W., Waldmann T.A., Rowe M., Mbulaiteye S.M., Rickinson A.B., Staudt L.M.
Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics.
Nature 490:116-120(2012)

PubMed=24590883; DOI=10.1002/gcc.22161
Murga Penas E.-M., Schilling G., Behrmann P., Klokow M., Vettorazzi E., Bokemeyer C., Dierlamm J.
Comprehensive cytogenetic and molecular cytogenetic analysis of 44 Burkitt lymphoma cell lines: secondary chromosomal changes characterization, karyotypic evolution, and comparison with primary samples.
Genes Chromosomes Cancer 53:497-515(2014)

PubMed=25960936; DOI=10.4161/21624011.2014.954893
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
OncoImmunology 3:e954893.1-e954893.12(2014)

PubMed=25485619; DOI=10.1038/nbt.3080
Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
A comprehensive transcriptional portrait of human cancer cell lines.
Nat. Biotechnol. 33:306-312(2015)

PubMed=26589293; DOI=10.1186/s13073-015-0240-5
Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Genome Med. 7:118.1-118.7(2015)

PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005
Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.
Characterization of human cancer cell lines by reverse-phase protein arrays.
Cancer Cell 31:225-239(2017)

PubMed=31160637; DOI=10.1038/s41598-019-44491-x
Quentmeier H., Pommerenke C., Dirks W.G., Eberth S., Koeppel M., MacLeod R.A.F., Nagel S., Steube K., Uphoff C.C., Drexler H.G.
The LL-100 panel: 100 cell lines for blood cancer studies.
Sci. Rep. 9:8218-8218(2019)

Cross-references
Cell line databases/resourcesCLO; CLO_0008738
CLO; CLO_0008739
MCCL; MCC:0000410
CLDB; cl4096
CLDB; cl4097
CLDB; cl4098
CCRID; 1101HUM-PUMC000048
CCRID; 1102HUM-NIFDC00052
Cell_Model_Passport; SIDM01094
CGH-DB; 9205-4
DepMap; ACH-001636
DSMZCellDive; ACC-603
FCS-free; 243-2-490-3-4-12
LINCS_HMS; 50811
LINCS_LDP; LCL-1097
Lonza; 725
Anatomy/cell type resourcesBTO; BTO:0003079
Biological sample resourcesBioSample; SAMN01821590
BioSample; SAMN01821657
BioSample; SAMN03472718
Cell line collections (Providers)ATCC; CRL-1596
BCRC; 60252
CLS; 302007
DSMZ; ACC-603
ECACC; 85030802
ECACC; 91030710
HIVReagentProgram; ARP-9938
JCRB; JCRB9119
KCLB; 21596
NCBI_Iran; C128
Chemistry resourcesChEMBL-Cells; CHEMBL3307664
ChEMBL-Targets; CHEMBL614629
PharmacoDB; RAMOS_1283_2019
PubChem_Cell_line; CVCL_0597
Encyclopedic resourcesWikidata; Q54949198
Experimental variables resourcesEFO; EFO_0002077

更多>>相关产品

总部地址:北京市怀柔区渤海镇怀沙路536号

关注我们
在线咨询
在线客服
电话咨询
微信客服
返回顶部